ALL PROGRAMMABLE

Pierre Maillard SEU team 02/06/18 Xilinx RT20 program update: Single Event Effect (SEE) and Total Ionizing Dose (TID) test results (to date)

20nm UltraScale results – summary to date

	Protons > 40 MeV	Heavy-ions	SEL	SEFI	TID
Max particle or ion energy	64 MeV / > 10MeV*	1 - 60 MeV.cm2/mg	60 MeV.cm2/mg		100 krad (Si)***
Facility	CNL / LANSCE	LBNL	LBNL	LBNL/ CNL	Vanderbilt University
Previous results (production)	2.6 x 10 ⁻¹⁵ cm²/bit	1E-8 upset/bit/day	NO events @ 125C	TBD	7% increase in ICCINT No performance degradation

- Summary across all data points
- Suggested 4 particle tests for 20nm RT
 - Proton SEU, SEL & 1st pass heavy-ion SEU/SEL completed
 - 2st pass TID experiments at Vanderbilt University using the ARACOR® XRAY machine completed
- > SEL & SEU were primarily performed on XCKU040**
 - Additional HW resources will be required for SEFI testing & uncorrectable events rate for ions
 > 14 MeV.cm2/mg
 - * Xilinx UG116 report
 - ** All Xilinx devices share the same circuit designs
 - *** 100 krad is enough for most applications

Basic 20nm UltraScale test setup

- > DUT: XCKU040 commercial device
 - Future plan is KU060
 - Share the same circuit designs
- DUT mounted on AFX-1156 board – Kapton heater tape experiments@ Temp.
- > SW solution w/ Vivado:
 - Program FPGA (static patterns)
 - Monitor junction temp (SysMon)
 - Readback bitstream
- Basic XCKU040 test setup is customized based on test facility

SEU & SEL results (terrestrial – NYC sea level)

Device	Туре	Neutron FIT/Mb*	Alpha FIT/Mb	Thermal neutron FIT/Mb	
XCKU040	CRAM	33 (34 w/ 60% c.Ⅰ.)	20 (21 w/ 60% c.l.)	0.5 (0.5 w/ 60% c.Ⅰ.)	
XCKU040	BRAM	58 (58 w/ 60% c.l.)	40 (Estimate from foil)	1.0 (1.1 w/ 60% c.l.)	

- Same results observed for KU060
 - Same circuit elements in all UltraScale family
- > > 99.9% of events are correctable in CRAM
 - Similar results @ high temperature
- ▶ 100% of events are correctable in BRAM
- > No SEL observed at temp up to 125°C
 - Total fluence is ~ 2x10¹² p/cm2

*For SEU cross-section please refer to UG116

Heavy-ion SEU & SEL results

- CRAM ~ 1 x 10⁻⁸ upset/bit/day
 - Total fluence of 1e7 ions/cm² per run
- NO SEL event observed @ 125°C at LET up to 60 MeV.cm²/mg
 - Limit of LBNL test facility for 10 MeV cocktail; performed for KU060 as well
 - Total fluence of 1e7 ions/cm² per run
- Missing data: uncorrectable event rate @ ion LET > 14
 - No data with scrubbing (Xilinx SEM-IP) enabled

© Copyright Xilinx

X-Ray TID test setup details

- 10 keV X-Ray test used as proxy for 60Co Gamma TID [1]
 - Aracor system @ Vanderbilt University
- Test Detail
 - Parts thinned to 40 um; exposure from die backside
 - Total exposure to 150 krad X-Ray
 - Dose rates of 5 krad /min & 10 krad /min
 - Equivalency to 60Co Si dose level
 - 140 krad (SiO2) X-Ray ≈ 100 krad (Si) 60Co gamma rays [2]
 - Hence correction factor of 0.73 used to derive 60Co Si gamma dose
- Currents monitored using Maxim power tool GUI
- Ring oscillators used to characterize live performance
 - 9 ring oscillators across die; 4 in corners & 5 in center
 - Typical RO frequency ~ 300 MHz
 - [1]. See page 6 for complete list of references 1 5
 - [2]. See page 6; reference 6.

Ring oscillators distribution on DUT for performance characterization

TID test results (Example: data sample for KU040)

Dose rate	Dose / step	Additional wait time btw steps (min)	Junction Temp (°C)	Total dose krad (Si)	ICC-INT (pre- dose)	ICC-INT * @ Total dose	Delta ICC	ICC-INT after 1 week	Delta performan ce	Comments	
4krad/min	4krad	5	~ 40oC	110	2.21	2.40	9%	Same as pre-dose	<< 1%	< 10% increase in leakage current independent of dose rate Part fully recovered after 1 week a RT (unpowered)	
7krad/min	7krad	0	~ 40oC	110	2.22	2.43	9%	Same as pre-dose	<< 1%		

- At 100krad Tj ~ 40°C
- < 10% increase in leakage current @ 110k rad (Si)</p>
 - Independent of dose rate
 - Leakage data corrected to same die temperature Tj @ 0krad
- ➤ Full recovery in leakage after 1 7 days at room temperature
 - ~31^oC unpowered
- > Average across all data is ~ 7% increase in VCCINT leakage current

Next steps:

	Protons	Heavy-ions	SEL	SEFI	TID
Max particle or ion energy	0 - 64 MeV	1 - 80 MeV.cm2/mg	80 MeV.cm2/mg		300 krad (Si)***
Facility	CNL	LBNL	LBNL	CNL / LBNL	DMEA
Timeline / comments (production)	TBD Estimates for LEO	TBD w/ ECC (SEM IP enabled)	TBD NO events @ 125C ?	TBD	Feb./Mar/ End
Owner/funding	ding SEU team		SEU team	A&D	A&D

